83 research outputs found

    Model refinements in view of wastewater treatment plant optimization : improving the balance in sub-model detail

    Get PDF
    Water is a very vulnerable resource and needs to be protected. In order to optimise wastewater treatment technology, we need to better understand the processes taking place in them. Mathematical modelling is a powerful tool to build knowledge about complex processes as it can exploit the power of computation. In this work wastewater treatment plant process optimization was pursued through the development of new models. In order to describe/model a WWTP it is mandatory to describe all of the processes in a sufficiently detailed manner (i.e. not overly complex nor oversimplified). Indeed, it does not make sense to use an overly detailed bio-kinetic model including hundreds of components and to oversimplify hydraulics, chemical reactions, aeration or settling behaviour. At this point WWTP models consist of highly detailed bio-kinetic models but often lack detail of other critical processes (hydraulics, chemical processes, gas-liquid transfers, aeration, energy consumption…). Emphasis is given to sub processes that are known to have a large impact on the overall process performance, i.e. influent characterization, primary sedimentation, aeration and energy consumption. The gathered knowledge is a step forward towards improving the way we design and operate our wastewater treatment infrastructure

    Use of habitat suitability modeling in the integrated urban water system modeling of the Drava River (Varazdin, Croatia)

    Get PDF
    The development of practical tools for providing accurate ecological assessment of rivers and species conditions is necessary to preserve habitats and species, stop degradation and restore water quality. An understanding of the causal mechanisms and processes that affect the ecological water quality and shape macroinvertebrate communities at a local scale has important implications for conservation management and river restoration. This study used the integration of wastewater treatment, river water quality and ecological assessment models to study the effect of upgrading a wastewater treatment plant (WWTP) and their ecological effects for the receiving river. The WWTP and the water quality and quantity of the Drava river in Croatia were modelled in the software WEST. For the ecological modeling, the approach followed was to build habitat suitability and ecological assessment models based on classification trees. This technique allows predicting the biological water quality in terms of the occurrence of macroinvertebrates and the river status according to ecological water quality indices. The ecological models developed were satisfactory, and showed a good predictive performance and good discrimination capacity. Using the integrated ecological model for the Drava river, three scenarios were run and evaluated. The scenario assessment showed that it is necessary an integrated approach for the water management of the Drava river, which considers an upgrading of the WWTP with Nitrogen and Phosphorous removal and the treatment of other diffuse pollution and point sources (including the overflow of the WWTP). Additionally, if an increase in the minimum instream flow after the dams is considered, a higher dilution capacity and a higher self-cleaning capability could be obtained. The results proved that integrated models like the one presented here have an added value for decision support in water management. This kind of integrated approach is useful to get insight in aquatic ecosystems, for assessing investments in sanitation infrastructure of urban wastewater systems considering both, the fulfilling of legal physical chemical emission limits and the ecological state of the receiving waters

    Towards improved 1-D settler modelling : calibration of the Bürger model and case study

    Get PDF
    Recently, Burger et al. (2011) developed a new 1-D SST model which allows for more realistic predictions of the sludge settling behaviour than traditional 1-D models used to date. However, the addition of a compression function in this new 1-D model complicates the model calibration. This study aims to report advances in the calibration of this novel 1-D model. Data of the evolution of the sludge blanket height during batch settling experiments were collected at different initial solids concentrations. Based on the linear slopes of the batch settling curves the hindered settling velocity functions by Vesilind (1968) and Takacs et al. (1991) were calibrated. Although both settling velocity functions gave a good fit to the experimental data, very large confidence intervals were found for the parameters of the settling velocity by Takacs. Global sensitivity analysis showed that it is not possible to find a unique set of parameter values for the settling function by Takacs based on experimental data of the hindered settling velocity. Subsequently, the calibrated Vesilind settling velocity was implemented in the 1-D model by Burger et al. (2011) and the parameters of the additional compression function were calibrated by fitting the model by Burger et al. (2011) to the batch settling curves. Simulation results showed that while the 1-D model by Takacs et al. (1991) underpredicted the experimental data of sludge blanket heights, the model by Burger et al. (2011) was able to predict the experimental data far more accurately. However, a global sensitivity analysis showed that no unique optimum for the combined set of hindered and compression parameters could be found
    corecore